Organ donation from brain tumour patients

A report of the work undertaken by the Advisory Committee on the Safety of Blood, Tissues and Organs (SaBTO) on the use of organs for transplantation from donors with primary brain tumours, including recommendations for clinical practice in this area, is published today.

People with a Malignant disease are not usually considered as potential organ donors because of the risk of transmitting the malignancy. However, an exception is made for the group of patients with primary brain tumours, as there is a very low risk of spreading to one of the organs to be transplanted, and thus of being transferred into the recipient.

Anecdotal reports suggest that certain characteristics increase the likelihood of spreading, but these are based on poor quality data. In addition, even if there is a risk of transmitting a tumour, the magnitude of this risk has rarely been compared with the risk of not being transplanted.

With a view to improving the information available to UK transplant practitioners, SaBTO set up a working group to analyse the UK experience of organs from donors with primary brain tumours being used in transplantation, and determine if it would be possible to offer colleagues improved guidance on practice in this area. The Group consulted widely on this topic, and SaBTO made it the subject of its annual open meeting in 2010.

Based on its analysis, the Working Group concluded that, with some exceptions, organs from donors with primary brain tumours should be used.  The Group drew up recommendations, which were endorsed by SaBTO, to help those making the decision in each individual case.  If clinicians choose to follow the recommendations, some additional organs could become available for transplantation.

Details of the evidence considered, methodology and conclusions drawn are set out in the Working Group’s report which you can read below:

Transplantation:
27 February 2012 - Volume 93 - Issue 4 - p 348–353
doi: 10.1097/TP.0b013e31823f7f47
Editorials and Perspectives: Forum

Advising Potential Recipients on the Use of Organs From Donors With Primary Central Nervous System Tumors

Warrens, Anthony N.1,9; Birch, Rhiannon2; Collett, David2; Daraktchiev, Maren3; Dark, John H.4; Galea, George5; Gronow, Katie3; Neuberger, James2; Hilton, David6; Whittle, Ian R.7; Watson, Christopher J. E.8; for the Advisory Committee on the Safety of Blood, Tissues and Organs, UK

Free Access
Article Outline
Collapse Box

Author Information

1Office of the Dean for Education, Barts and the London School of Medicine, Queen Mary, University of London, London, United Kingdom.

2NHS Blood and Transplant, Stoke Gifford, Bristol, United Kingdom.

3Department of Health, Health Protection Analytical Team, Wellington House, London, United Kingdom.

4Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.

5Scottish National Blood Transfusion Service Headquarters, Tissues and Cells Directorate, Edinburgh, United Kingdom.

6Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth, United Kingdom.

7Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.

8Department of Surgery and the NIHR Cambridge Biomedical Research Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.

The authors declare no funding or conflicts of interest.

Address correspondence to: Anthony N. Warrens, D.M., Ph.D., F.R.C.P., Office of the Dean for Education, Barts and the London School of Medicine, Queen Mary, University of London, Garrod Building, Turner Street, London E1 2AD, United Kingdom. E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it

A.N.W. proposed that the issue be researched by SaBTO, chaired and coordinated the Working Group, and wrote the manuscript. R.B., D.C., M.D., and K.G. developed the statistical models and performed the statistical analysis. A.N.W., J.D., G.G., J.N., D.H., I.W., and C.J.E.W. identified the clinically important issues from within their various areas of clinical expertise and developed the appropriate statistical questions. J.N., as part of NHS Blood and Transplant, provided the clinical data from the UK transplant registry and participated in its analysis. All authors reviewed the manuscript in its various iterations.

Received 29 March 2011. Revision requested 9 May 2011.

Accepted 28 October 2011.

Collapse Box

Abstract

Deciding to use an organ from a donor with a primary central nervous system (CNS) Tumor necessitates offsetting the risk of tumor transmission with the chances of survival if the patient waits for another offer of a transplant. Published data vary in the quoted risk of tumor transmission. We used data obtained by reviewing 246 UK recipients of organs taken from donors with CNS tumors and found no evidence of a difference in overall patient mortality for recipients of a kidney, liver, or cardiothoracic organ, compared with recipients of organs from donors without a CNS tumor. Recent publication of the UK experience of transplanting organs from CNS tumor donors found no transmission in 448 recipients of organs from 177 donors with a primary CNS tumor (Watson et al., Am J Transplant 2010; 10: 1437). This 0% transmission rate is associated with an upper 95% confidence interval limit of 1.5%. Using a series of assumptions of risk, we compared the risks of dying as a result of the transmission of a primary brain tumor with the risks of dying if not transplanted. On this basis, the use of kidneys from a donor with a primary CNS tumor provides a further 8 years of life over someone who waited for a donor who did not have a primary CNS tumor, in addition to the life years gained by the transplant itself. The benefits for the recipients of livers and cardiothoracic organs were less, but there was no disadvantage in the impact on life expectancy.

Back to Top | Article Outline

RECOMMENDATIONS FOR CLINICAL PRACTICE

On the basis of the current analysis, it is recommended that organs donated by deceased individuals with primary central nervous system (CNS) tumors should be used. We suggest the following two caveats:

1. The presence of a Cerebrospinal fluid (CSF) shunt does increase the risk of extraneural metastasis. However, this is likely to be less than 1%. Although there are anecdotal reports of extraneural metastasis in patients who have undergone surgery, Chemotherapy, or Radiotherapy to the tumor, there is no convincing evidence that these forms of treatment will put the recipient at significantly increased risk of tumor transfer, and should not represent an absolute contraindication to transplantation.

2. Histology

a. If the Lesion is a metastasis or a lymphoma (even if a presumed primary CNS lymphoma), the patient should not be used as an organ donor.

b. The overall risk of extraneural spread of all other histological types should be regarded as having an upper 95% confidence interval limit of 1.5%.

c. The estimated risk of extraneural spread from a donor with a CNS tumor with a histological label that would be regarded as representing a contraindication according to previously published guidance (1, 2) is 2.2%, with a upper 95% confidence interval limit of 6.4%. We recommend this figure be used in advising patients of the risks of receiving organs from donors with World Health Organization (WHO) grade 4 tumors (WHO grade 4 tumors and equivalents: glioblastoma, giant cell glioblastoma, gliosarcoma, pineoblastoma, medulloblastoma, CNS primitive neuroectodermal tumor, medulloepithelioma, ependymoblastoma, atypical teratoid/rhabdoid tumor, malignant peripheral nerve sheath tumor [may be WHO grade 2, 3, or 4 depending on features], germinoma, immature teratoma, teratoma with malignant transformation, yolk sac tumor [endodermal sinus tumor], embryonal carcinoma, and choriocarcinoma).

d. On the basis of their biological behavior in other situations, we recommend that WHO grade 3 lesions (WHO grade 3 tumors: anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma, ependymoma, choroid plexus carcinoma, anaplastic ganglioglioma, pineal parenchymal tumor of intermediate differentiation [may be WHO grade 2 or 3 depending on features], papillary tumor of the pineal region [may be WHO grade 2 or 3 depending on features], malignant peripheral nerve sheath tumor [may be WHO grade 2, 3, or 4 depending on features], anaplastic/malignant meningioma, papillary meningioma, rhabdoid meningioma, hemangiopericytoma [may be WHO grade 2 or 3 depending on features]) be regarded as having an intermediate risk of transfer (with an upper 95% confidence interval limit between the 6.4% for grade 4 lesions and the 1.5% for all primary tumors).

(These recommendations do not deal with a metastatic deposit from a presumed extracranial primary. A retrieval surgeon should always perform a thorough laparotomy and thoracotomy at the time of retrieval, whether or not there is a known malignancy, but it is particularly important to do so in the context of the finding of an Intracranial mass. Ideally, the donor will have had previous imaging, including chest radiography, abdominal ultrasound, and possibly also whole body computed tomography scanning, and histological assessment of any lesion found. However, we recognize that this is not always possible and should not act as a brake on proceeding.)

Back to Top | Article Outline
Is Histological Diagnosis Necessary?

A histological diagnosis should be obtained where possible. Generally, the radiological diagnosis of meningeal tumors and tumors of Cranial and paraspinal nerves is reliable. In other circumstances, the opinion of a specialist neuroradiologist must be sought and in some circumstance he/she will be confident of the histological type of the tumor. In other circumstances, donation should only proceed when the nature of the tumor is made on histologically.

Back to Top | Article Outline

INTRODUCTION

Despite the considerable shortfall between the demand for and supply of organs for transplantation, it is important to ensure that the risk of transmitting disease with a transplanted organ is minimized. Attention has focused recently on the use of organs from donors with primary cerebral tumors, because these are known to be associated with a low risk of extraneural spread (reported as 0.4%–2.3%) (3). Received wisdom has suggested that it is safe to use such donors, if their tumors are known to be low histological grade, but not so for high grade lesions or where there was been a breach of the blood-brain barrier, such as with Craniotomy or the insertion of a CSF shunt (1, 2, 4, 5). As a result, few such patients become donors: primary CNS tumors represent 3% to 4% of the causes of brain death among organ donors (2), but, in one series, less than 0.5% of 13,000 patients dying with a Glioma became organ donors (6).

Reliable data on the actual risk of transmission after transplantation are sparse and subject to bias due to overreporting to registries. One review reported the transmission of CNS cancers from seven donors (6): 11 of 19 recipients developed donor-transmitted Cancer, of whom five were reported to have died. Two retrospective reviews reported primary CNS tumor transmission rates of 3% (7) and 8% (8), respectively. The Israel Penn International Transplant Tumor Registry reported an 18% transmission of such tumors (9). However, a Czech series of 42 donors with primary brain tumors reported no transmission (10). A small series of cardiothoracic organ recipients found transmission to 1 of 6 recipients (11), but a German series showed no transmission with cardiac allografts from 32 donors with primary brain tumors (12).

Three donor registries have reported their experiences: United Network for Organ Sharing registry reported no cases of donor-transmitted malignancies out of 397 donors with a history of CNS tumors donating to 1220 recipients (13), although a subsequent report identified one of 642 donors with primary brain tumors who had transmitted the tumor to three recipients (14). In an Australasian series, none of 151 recipients of 46 donors with primary CNS lesions demonstrated evidence of donor tumor transmission (14).

Two of us (C.J.E.W. and D.C., with colleagues) undertook a rigorous review of UK experience in this area (15). Information from the UK Transplant Registry was combined with three national cancer registries to identify all organ donors between 1985 and 2001 who had had primary brain tumors and the occurrence of posttransplant spread into the recipients of organs taken from them. Of 11,799 donors, 179 were identified as having primary intracranial malignancy, of whom 33 had high grade histology. Four hundred forty-eight recipients of 495 organs from 177 of these people were identified and reviewed and no case of transmission of donor malignancy was identified. We have relied heavily on this study to develop the practical recommendations reported in this manuscript.

However significant (or not) the risk of transmitting a donor-derived tumor, there is also a risk of a patient with end-stage organ failure dying before a graft is available or becoming too unfit to receive a graft; but no account has been taken of the relative magnitude of each of these risks. As such, it is difficult to determine whether rejecting organs from such donors represents a logical response. Also, such quantification of risk would be of value in advising a potential recipient of the risk he was taking in accepting a graft from a donor with a primary CNS malignancy. For these reasons, we decided to review further the UK experience of using organs taken from individuals with primary brain tumors with a view to developing practical guidelines.

Back to Top | Article Outline

OUTCOME OF TRANSPLANTATION OF ORGANS FROM DONORS DYING WITH PRIMARY BRAIN TUMORS

To determine the implications of recent UK practice in this area, we analyzed outcome data over a 15-year period after transplantation to determine any association between patient survival (and also graft survival in the case of kidney transplantation) and whether the donor was known, from cancer registry data, to have had a CNS tumor. Transplants involving donors with CNS tumors were identified using data from the study of Watson et al. (15). Data on outcomes after first adult recipient deceased donor solid organ transplants were obtained from the UK Transplant Registry. Multiorgan transplants, regrafts, pediatric transplants, heterotopic heart transplants, auxiliary liver transplants, liver transplants for patients with intestinal failure, and transplants involving patients not entitled to NHS treatment were also excluded.

Cox proportional hazards regression modeling was used to determine the strength of evidence against the null hypothesis that donor CNS tumor status does not influence patient and graft survival after transplantation. The factors included in the risk-adjusted models were as follows: donor sex (cardiothoracic and liver), donor age, donor type (lung only and kidney), donor cause of death (kidney), recipient age, sex (cardiothoracic and liver) and body mass index (liver), transplant year, transplant unit (cardiothoracic and liver), indication (liver), primary disease (kidney), human leukocyte antigen mismatch (kidney), recipient ethnicity (kidney), and ischemia time (total: cardiothoracic; cold: liver). Transplants with missing cold ischemia time (heart: 10%; lung: 17%; and liver: 6%) were excluded. An “unknown” category was included in factors to allow for missing values.

This analysis shows no reason to reject the hypothesis that there is no difference in patient survival for recipients of a kidney, liver or cardiothoracic organ, or in renal graft survival, between recipients of transplants from donors with or without a CNS tumor (Table 1). These data would include any effects of tumor transmission. Hence, the criteria that had informed practice over the period of this study had not disadvantaged those patients who had received organs from patients with primary CNS tumors. It may therefore be the case that, during this period, patients may have been disadvantaged by the inappropriate nonuse of donors.

Table 1
Table 1
Image Tools
Back to Top | Article Outline
Risk of Acquiring and Dying From a Donor-Derived Primary CNS Tumor

Watson et al. (15) identified 448 recipients of 495 organs from 177 donors between 1985 and 2001 who had primary CNS tumors. None developed evidence of transmission of an intracranial malignancy over a minimum follow-up period of 5 years. This 0% transmission rate is associated with an upper 95% confidence interval limit of 1.5%. These data provide greater reassurance than older publications in the literature which we believe were subject to significant reporting bias.

This is despite the fact that significant numbers of these patients (at least 45) had a CNS tumor with a histological label that would be regarded as representing a contraindication according to published guidance. We attempted to quantitate the risk associated with the lack of transmission within a cohort of this size. If one were to assume that a hypothetical 46th patient were to undergo spread, the estimated risk of transmission would be 2.2% with a upper 95% confidence interval limit of 6.4%. Because of all of the individuals in this cohort of 45 had a WHO grade 4 tumor, we recommend this figure be used in advising patients with WHO grade 4 tumors on the risks of receiving such a transplant.

Data on individual tumor types are not available because of the rarity of some lesions. However, on the basis of their biological behavior in other situations, we recommend that WHO grade 3 lesions and ependymomas be regarded as having an intermediate risk of transfer (with an upper 95% confidence interval limit between the 6.4% for grade 4 lesions and the 1.5% for all primary tumors).

If the lesion is a metastasis or a lymphoma (even if believed to be a primary CNS lymphoma), the patient should not be used as a donor because the risk of transmission may be significant. Although it is true that the risks of extraneural spread from a primary CNS lymphoma are low, it can be difficult to exclude the possibility that the lymphoma has spread from an extracranial site.

A histological diagnosis of the CNS tumor should be obtained where possible. Generally, the radiological diagnosis of meningeal tumors and tumors of cranial and paraspinal nerves is reliable. In other circumstances, the opinion of a specialist neuroradiologist must be sought and in some circumstance he/she will be confident of the histological type of the tumor. In other circumstances, transplantation should only proceed once an appropriate histological diagnosis has been made, possibly through a postretrieval craniotomy.

To gain sufficient power to undertake this analysis, we have grouped together tumors of different histological types. We cannot exclude the possibility that one or more of these subtypes (especially the rare ones) might behave differently. The presence of a CSF shunt does increase the risk of extraneural metastasis. However, extrapolating from published studies (16, 17), this risk is likely to be less than 1% overall. This should be taken into account in advising the patient about the risks of proceeding with the transplant against the risks of not proceeding.

Although there are anecdotal reports of extraneural metastasis in patients who have undergone surgery, chemotherapy and radiotherapy to the tumor, in our view, there is no convincing evidence that these forms of treatment will put the recipient at significantly increased risk of tumor transfer, and they should not be a contraindication to transplantation.

Back to Top | Article Outline
Comparing the Risks of Death as a Result of Transmission of a Primary Brain Tumor With the Risks of Dying if Not Transplanted

To estimate the potential benefit of using organs from donors with a CNS tumor, a Monte Carlo simulation model was used. In summary, simulated values for the life years gained through the use of organs from a donor with a CNS tumor are compared with simulated values of the life years gained by not using such organs.

Formulae for life years gained are derived in Table 2 and are applicable for any solid organ. The formula for the life years gained after transplantation with an organ from a donor with a CNS tumor is based on survival after transplantation. The formula takes account of the chance of death after transmission of a tumor, and the chance of surviving to a retransplant if the affected organ is removed. The formula for the expected number of life years gained without using donors with CNS tumors assumes that a patient who may have received such an organ has to wait for a subsequent offer, during which time he may die on the waiting list or become unsuitable for transplantation. Plausible values of the individual parameters in these formulae are given in Table 3. These have been derived from estimates of recent clinical experience (d, n, m, w0, w1, pW), estimates from the literature (pT) and clinical judgment (t, pD). For pW and w0, alternative values labeled pW′ and w0′ have also been used.

Table 2
Table 2
Image Tools
Table 3
Table 3
Image Tools

Interval estimates are shown for some of these, where there is uncertainty in their actual values. This uncertainty will in turn lead to variation in estimated life years gained, and the extent of this is estimated using simulation. In summary, values of w0, w1, pW, pT, and t are simulated from probability distributions that have the same means as in Table 3, and that have a 95% chance of a value in the interval specified for that parameter in Table 3. These individual simulated values lead to an estimate of life years gained. This process is then repeated a large number of times to give the distribution of life years gained, from which the interval that includes 95% of values can be found.

The estimated life years gained from using donors with CNS tumors, over and above the life years gained if the recipient were to wait for an organ from a donor without a CNS tumor is given in Table 4. These are crucially dependent on the assumptions made, including the chances of dying on the waiting list. It is likely that, in practice, the transplanting surgeon may opt to use an organ from a donor with a primary CNS tumor in higher risk recipients, such as older individuals, or people with high comorbidities. This shows that there is a potential for gaining a large number of life years through the use of kidneys from donors with CNS tumors. The benefit from using livers is not as great, but there is the potential for gaining 3 life years per transplant (assuming an annual mortality on the waiting list of 50%) or 2 years (if one assumes an annual mortality of 20%). The larger potential gain from using kidneys from donors with CNS tumors is explained by the waiting time for a subsequent offer of a kidney being longer than that for other organs, if a donor with a CNS tumor is not used. The potential gain from using kidneys is 8 years (assuming an annual waiting list mortality of 20%) and 2 years (assuming an annual mortality of 12.5%). The gain from using cardiothoracic organs is more marginal.

Table 4
Table 4
Image Tools

It is estimated that there may be up to 20 potential organ donors with a CNS tumor per year in the United Kingdom. If all major organs from each donor were transplanted, using the assumptions of greater death on the waiting list this would lead to a gain of 320 life years in kidney transplant recipients, 60 in liver recipients, and 40 and 20 in heart and lung recipients, respectively, every year.

Back to Top | Article Outline
ACKNOWLEDGMENT

The authors thank Sally Rushton for helping in data analysis.

Back to Top | Article Outline

REFERENCES

1. Select Committee of Experts on the Organisational Aspects of Cooperation in Organ Transplantation. Council of Europe, International Consensus Document Standardization of Organ Donor Screening to Prevent Transmission of Neoplastic Diseases. 1997.

2. Council of Europe. Criteria for preventing the transmission of neoplastic deseases in organ donation. Council of Europe Publishing, 2006.

3. Gandhi MJ, Strong DM. Donor derived malignancy following transplantation: A review. Cell tissue Bank 2007; 8: 267.

4. Kalble T, Lucan M, Nicita G, et al.. EAU guidelines on renal transplantation. Eur Urol 2005; 47: 156.

5. Fiorentino M, D'Errico A, Corti B, et al.. A multiorgan donor cancer screening protocol: The Italian Emilia-Romagna region experience. Transplantation 2003; 76: 1695.

6. Collignon FP, Holland EC, Feng S. Organ donors with malignant gliomas: An update. Am J Transplant 2004; 4: 15.

7. Colquhoun SD, Robert ME, Shaked A, et al.. Transmission of CNS malignancy by organ transplantation. Transplantation 1994; 57: 970.

8. Jonas S, Bechstein WO, Lemmens HP, et al.. Liver graft-transmitted Glioblastoma Multiforme. A case report and experience with 13 multiorgan donors suffering from primary cerebral neoplasia. Transpl Int 1996; 9: 426.

9. Penn I. Transmission of cancer from organ donors. Ann Transplant 1997; 2: 7.

10. Pokorna E, Vitko S. The fate of recipients of organs from donors with diagnosis of primary brain tumor. Transpl Int 2001; 14: 346.

11. Buell JF, Trofe J, Hanaway MJ, et al.. Transmission of donor cancer into cardiothoracic transplant recipients. Surgery 2001; 130: 660.

12. Hornik L, Tenderich G, Wlost S, et al.. Organs from donors with primary brain malignancy: The fate of cardiac allograft recipients. Transplant Proc 2004; 36: 3133.

13. Kauffman HM, McBride MA, Cherikh WS, et al.. Transplant tumor registry: Donors with central nervous system tumors. Transplantation 2002; 73: 579.

14. Kauffman HM, Cherikh WS, McBride MA, et al.. Deceased donors with a past history of malignancy: An organ procurement and transplantation network/united network for organ sharing update. Transplantation 2007; 84: 272.

15. Watson CJ, Roberts R, Wright KA, et al.. How safe is it to transplant organs from deceased donors with primary intracranial malignancy? An analysis of UK Registry data. Am J Transplant 2010; 10: 1437.

16. Rickert CH. Extraneural Metastases of paediatric brain tumours. Acta Neuropathol 2003; 105: 309.

17. Varan A, Sari N, Akalan N, et al.. Extraneural metastasis in intracranial tumors in children: The experience of a single center. J Neurooncol 2006; 79: 187.

Organ donation; Cerebral tumors; Metastasis.

© 2012 Lippincott Williams & Wilkins, Inc.

# Article Title
# Article Title

 


SAPE ERROR: Нет доступа на запись к файлу: /home/btbuddies/public_html/templates/68portal_orig/images/cache/3f9e7ffccc6995af0bc4886a484f1db1/links.db! Выставите права 777 на папку.